Quick search


version 0.5

Survival analysis built on top of scikit-learn

People: Sebastian P\xf6lsterl


License Travis CI Build Status AppVeyor Build Status codecov Codacy Badge

scikit-survival is a Python module for survival analysis built on top of scikit-learn. It allows doing survival analysis while utilizing the power of scikit-learn, e.g., for pre-processing or doing cross-validation.

About Survival Analysis

The objective in survival analysis (also referred to as reliability analysis in engineering) is to establish a connection between covariates and the time of an event. What makes survival analysis differ from traditional machine learning is the fact that parts of the training data can only be partially observed u2013 they are censored.

For instance, in a clinical study, patients are often monitored for a particular time period, and events occurring in this particular period are recorded. If a patient experiences an event, the exact time of the event can be recorded u2013 the patientu2019s record is uncensored. In contrast, right censored records refer to patients that remained event-free during the study period and it is unknown whether an event has or has not occurred after the study ended. Consequently, survival analysis demands for models that take this unique characteristic of such a dataset into account.


  • Python 3.5 or later
  • cvxpy
  • cvxopt
  • numexpr
  • numpy 1.10 or later
  • pandas 0.19 or later
  • scikit-learn 0.19
  • scipy 0.17 or later
  • C/C++ compiler


The easiest way to get started is to install Anaconda and setup an environment:

conda install -c sebp scikit-survival

Installing from source

First, create a new environment, named sksurv:

conda create -n sksurv -c sebp python=3 --file requirements.txt

To work in this environment, activate it as follows:

source activate sksurv

If you are on Windows, run the above command without the source in the beginning.

Once you setup your build environment, you have to compile the C/C++ extensions and install the package by running:

python install

Alternatively, if you want to use the package without installing it, you can compile the extensions in place by running:

python build_ext --inplace

To check everything is setup correctly run the test suite by executing:



The source code is thoroughly documented and a HTML version of the API documentation is available at

You can generate the documentation yourself using Sphinx 1.4 or later:

cd doc
make html
xdg-open _build/html/index.html


Please cite the following papers if you are using scikit-survival.

1. Pxf6lsterl, S., Navab, N., and Katouzian, A., Fast Training of Support Vector Machines for Survival Analysis. Machine Learning and Knowledge Discovery in Databases: European Conference, ECML PKDD 2015, Porto, Portugal, Lecture Notes in Computer Science, vol. 9285, pp. 243-259 (2015)

2. Pxf6lsterl, S., Navab, N., and Katouzian, A., An Efficient Training Algorithm for Kernel Survival Support Vector Machines. 4th Workshop on Machine Learning in Life Sciences, 23 September 2016, Riva del Garda, Italy

3. Pxf6lsterl, S., Gupta, P., Wang, L., Conjeti, S., Katouzian, A., and Navab, N., Heterogeneous ensembles for predicting survival of metastatic, castrate-resistant prostate cancer patients. F1000Research, vol. 5, no. 2676 (2016).



You can download the latest distribution from PyPI here:

Using pip

You can install scikit-survival for yourself from the terminal by running:

pip install --user scikit-survival

If you want to install it for all users on your machine, do:

pip install scikit-survival
On Linux, do sudo pip install scikit-survival.

If you don't yet have the pip tool, you can get it following these instructions.

This package was discovered in PyPI.